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ABSTRACT
Scratchpad Memory (SPM) is widely used in emerging

domain-specific architectures and accelerators for improving en-

ergy efficiency and time predictability. Typically, SPM-based ar-

chitectures use DMA for fetching data from off-chip memory and

global load instructions for loading fine-grained data directly into

registers. For such architectures, neither capacity-only nor bandwidth-

only loop tiling can efficiently use the bandwidth and SPM. This

paper introduces a bandwidth-aware loop tiling approach that en-

ables a tradeoff between SPM space utilization and bandwidth uti-

lization to be made, by leveraging a runtime tiling framework and

a cross-host-kernel IPA. Experimental results demonstrate that our

approach can achieve the performance improvement of up to 4x,

with a geometric average of 26%.
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1 INTRODUCTION
Nowadays, Scratchpad Memory (SPM) is widely used as the on-chip

memory for a number of domain-specific architectures

[37, 54] and accelerators [9, 17, 20, 48]. Unlike caches, SPM, which

is explicitly managed by software, is mapped into an address range

that is different from the main memory. SPM is a popular alterna-

tive of cache due to its two advantages, higher memory efficiency

and better time predictability [4]. For example, Sunway TaihuLight,

Diannao and CELL all use SPM as the on-chip memory.

Moreover, emerging SPM-based architectures typically provide

a DMA mechanism for fetching data to SPM [17, 20, 48] with a

limited bandwidth, together with some global SPM-bypassing load

instructions that can directly manipulate some individual elements
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Generated work-item loop:

for (lid = 0; lid < lsize; lid ++)   {
     … = a * Elm[Nbr[2*lid]]
          + b * Elm[Nbr[2*lid+1]] … 
}

(a) Codes with irregular reads.

ld ldld ldldld ld

Elm

DMA

Nbr

(b) Capacity-only.

DMA1

Elm

DMA

Nbr

Useless data

DMA2DMA3 DMA4

(c) Bandwidth-only.

ldDMA

Elm

DMA

Nbr

Useless data

(d) Bandwidth-aware.

Figure 1: An example (simplified from SPECACCEL/cfd)
for comparing the capacity-only, bandwidth-only and
bandwidth-aware loop tiling.

in registers [20]. Unfortunately, such global load instructions usu-

ally waste significantly the available bandwidth, due to the long

access latency caused by the pipeline stalls in the processor [64].

As a representative SPM-based accelerator, the core processor of

the Sunway TaihuLight, SW26010, provides these two mechanisms,

which often exhibit significantly diverse bandwidth utilization rates,

ranging from 0.3GB/s to the peak 28GB/s.

Loop tiling, which is a significant optimization in compilers,

is a loop transformation for exploiting the spatial and temporal

locality of data accesses in loop nests. On cache-based architectures,

the tile size for a loop nest is typically selected according to the

cache capacity by computing its working set in order to keep the

frequently used data at a given level of cache targeted. A great deal

of research has been done on the tile size selection for cache-based

architectures [12, 30, 39, 43, 67, 69, 74].

For SPM-based architectures, researchers have focused on data

allocation and data fetching, by placing most frequently used data

objects in SPM, only if they can be stored entirely in SPM [10, 47].

As a result, some frequently used arrays cannot be allocated in

SPM if they are larger than SPM. In the case of data allocation, a

representative work on data tiling, proposed by Li et al [33, 34], uses

an ILP solver to select the best tiling schemes for all loop nests in the

program as a whole. In the case of data fetching, Bhatotia et al [6]

proposed a bounded method to fetch all indirect irregular accesses

using DMA, by using a list of bounding boxes that contain all

the needed elements. However, this method leverages a bandwidth-
only policy and mandatorily uses DMA operations for data fetching,

even if a large amount of useless data would end up being fetched,

sometimes wasting a significant amount of SPM. By far, there is no

analytical model to guide loop tiling by considering simultaneously

both the bandwidth and capacity.

We have observed that for the DMA-supported SPM-architecture,

neither capacity-only nor bandwidth-only approaches can effi-

ciently use the bandwidth and SPM. We use the example in Figure 1

for illustration. In the example, one simplified loop nest of OpenCL

code is selected from SPECACCEL/cfd, as shown in (a), containing

two array accesses (𝑁𝑏𝑟 and 𝐸𝑙𝑚). When we apply capacity-only

tiling (as shown in (b)), 𝑁𝑏𝑟 will be fetched to SPM using a DMA

operation, while the irregular 𝐸𝑙𝑚 will be fetched to registers using

global load instructions. This scheme will cause the overall band-

width utilization to be very low, i.e., 4.6GB/s. On the other hand,

when we apply bandwidth-only tiling in [6] (as shown in (c)), a

large number of useless elements (shown by the dotted blocks) will

be fetched due to the bounded box, achieving higher bandwidth

utilization (28GB/s) but at the expense of significantly poorer uti-

lization of SPM. In this paper, we propose a bandwidth-aware tiling

approach that coordinately considers bandwidth and capacity, by

fetching the green elements of 𝐸𝑙𝑚 using a DMA operation (with

1 useless data shown by the dotted block) and reading the yellow

block using load instructions, thus enabling a tradeoff to be made

between the SPM capacity and bandwidth utilization (16.8GB/s).

Our loop tiling approach works by coordinately considering

bandwidth and capacity as follows. First, we create a decision tree

to select optimal data fetching operations for different data access

patterns. Second, we build a dynamic loop tiling framework to

compute the optimal tile size according to the selected data fetch-

ing operations, and adjust the tile size at runtime when necessary.

Finally, a parameter-guided IPA is proposed to enhance the loop

tiling, by seeking for opportunities of static tiling for irregular ac-

cesses and using re-computation for saving SPM capacity. We have

implemented our approach in the Sunway TaihuLight’s OpenCL

compiler, SWCL, and demonstrate its performance benefits on the

SW26010 chip, using the OpenCL programming model.

In summary, this paper makes the following contributions:

• Bandwidth-aware loop tiling.We develop a bandwidth-aware

tile size selection model to simultaneously consider band-

width and SPM capacity. We create a decision tree for mod-

eling the bandwidth behavior, which is able to select differ-

ent fetching operations for different segments of the same

irregular-accessed array.

• Runtime tiling framework. We propose a dynamic loop tiling

framework to first determine the optimal data fetching oper-

ations and tile size, and then generate proper data fetching

statements, and finally adjust the tile size dynamically.

• OpenCL-specific parameter-guided interprocedural analysis
(IPA): We propose the IPA for analyzing the memory objects

accessed in both the host and kernel codes, and find new op-

timization opportunities of static tiling for irregular accesses

and using re-computation for saving SPM capacity.

• We implement the bandwidth-aware loop tiling approach

SWCL, and evaluate it using the SPECACCEL [28] bench-

mark suite. Experimental results demonstrate that it can

bring significant performance improvement, i.e., up to 4x,

with a geometric average of 26%.

The rest of the paper is organized as follows. Section 2 introduces

the background and motivation. Sections 3 and 4 describe the tile

size selection model and the run-time framework of bandwidth-

aware loop tiling, respectively. Section 5 describes OpenCL-specific

parameter-guided IPA for further enhancing performance of

bandwidth-aware loop tiling. Section 6 states our evaluation. Sec-

tion 7 discusses the related work. Section 8 concludes.
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2 MOTIVATION AND BACKGROUND
2.1 Sunway TaihuLight Overview
The Sunway TaihuLight supercomputer is powered by SW26010,

and its architecture is shown in Figure 2. The processor has four core

groups (CGs), each of which includes one management processing

element (MPE), one computing processing element (CPE) cluster

with 64 CPEs, one protocol processing unit (PPU), and one DDR3

memory controller (MC) [20] [16]. In this paper, we focus on the

programming of one single CG.

Each MPE has a 32 KB L1 data cache and a 256 KB L2 instruc-

tion/data cache, and each CPE has its own 16 KB L1 instruction

cache and a 64 KB SPM with the same speed as L1 cache. The data

movement between main memory and the SPM can be performed

through DMA with the theoretical bandwidth of 30.9GB/s for each

CPE cluster, meanwhile, global load/store (𝑔𝑙𝑑/𝑔𝑠𝑡 ) instructions are

provided for fine-grained data movements between main mem-

ory and registers with higher latencies, i.e., 177 and 278 cycles,

respectively, achieving the bandwidth of 1.6GB/s.

2.2 Basic OpenCL Implementation on SW26010
As a unified heterogeneous parallel programming framework,

OpenCL provides a platform-independent abstract platform model,
enabling programmers to arrange computations and data references

according to the OpenCL execution model and memory model [23].
These models are implemented in SWCL as follows.

The platform model consists of a host equipped with several

OpenCL devices, with each device being divided into several com-

pute units (CUs), which are further divided into several processing

elements (PEs). On SW26010, we take the MPE as the host and the

corresponding CPE clusters as the OpenCL device.

The execution model is defined in terms of two separate execution

units, i.e., the kernel codes running on the OpenCL devices and the

host codes on the host. When a kernel is launched for execution,

an index space, i.e., NDRange is defined, in which each point is

a work-item (kernel thread) running on one PE. The work-items

are organized into work-groups with each work-group running on

one CU, which is mapped to one CPE in SWCL. Thus the work-

items are executed on the CPE serially, which is referred to as

serial execution mode in [41]. Work-groups are statically assigned

to CPEs using block distribution, by introducing an explicit loop

nest, i.e., a work-group loop for each CPE, and work-group barriers

are thus supported by loop fission, as in POCL [27], MOCL [72]

and SNU-OCL [32].

The memory model defines two memory regions, the host mem-

ory and the device memory. Furthermore, the device memory con-

sists of global/constant memory shared across all work-items, local

memory shared in one work-group, and private memory used by

one work-item only. On SW26010, both host memory and

global/constant memory are mapped onto main memory, local

memory onto SPM, and private memory to local variables that will

be handled by the Sunway compiler backend.

2.3 An Motivation Example
In this section, we use the example of the loop nest in Figure 1 to

demonstrate why capacity-only and bandwidth-only loop tiling

CG

MC

MPE

CPE 
Cluster

Main Memory

CG

MC

MPE

CPE 
Cluster

Main Memory

CG

MC

MPE

CPE 
Cluster

Main Memory

CG

MC

MPE

Main Memory

Network on Chip
(NoC)

SI

L1

L2

L1

L2

CPE CPE CPE CPE...

CPE CPE CPE CPE...

CPE CPE CPE CPE...

CPE CPE CPE CPE...

... ... ... ...

LDM

CPE 
Cluster

Figure 2: Architecture of SW26010

approaches alone are not optimal for SPM-based architectures,

which use DMA and load/store instructions to fetch data. The code

accesses two buffers in an irregular way, i.e., 𝑁𝑏𝑟 for referring the

subscripts and 𝐸𝑙𝑚 for accessing the corresponding data.

Figure 1(b) shows how to use the SPM when applying capacity-

only tiling. In particular, the DMA operation will be leveraged to

fetch the continuous 𝑁𝑏𝑟 accesses, and global load instructions will

be used to fetch the individual irregular 𝐸𝑙𝑚 accesses directly into

registers. However, typically on SPM-based architectures, the global

load instructions would cause very poor bandwidth utilization,

i.e., 1.6GB/s on SW26010. Therefore, the overall bandwidth is only

4.6GB/s, leading to a significantly decreased performance even if

the SPM is maximally utilized.

Figure 1(c) shows how to use the SPMwhen applying bandwidth-

only tiling [6]. In particular, a list of fixed boxes are used to fetch

all the accessed data into SPM. Here the box size is 3, thus fetching

7 useful elements and 5 useless elements using 4 DMA operations.

In this case, the bandwidth utilization can be increased to 28GB/s,

but 5 × 4 = 20𝐵 of SPM capacity is wasted.

Considering the poor bandwidth utilization caused by capacity-

only tiling and the SPM waste caused by bandwidth-only tiling, we

can alternatively use a DMA operation (Figure 1(d)) for fetching the

continuous green part of the 𝐸𝑙𝑚 array, with 6 valid elements and

2 useless elements. Meanwhile, the left individual element (shown

as yellow) is kept using global load instructions. Therefore, we can

obtain the bandwidth of 16.8GB/s by wasting only 8B in SPM.

In summary, bandwidth-aware loop tiling is proposed to make a

trade-off between bandwidth and SPM utilization. To this end, we

need to address two research issues. First, how to select the optimal

data fetching schemes for regular and irregular array accesses in

the loop nest. Second, how to select the optimal tile size with the

pre-determined data fetching operations.

3 BANDWIDTH-AWARE TILING MODEL
3.1 SW26010 Data Fetching Model
As stated in Section 2.1, the off-chip memory can be accessed in

two ways, i.e., DMA and global load/store instructions (𝑔𝑙𝑑/𝑔𝑠𝑡 ).

Furthermore, DMA can work in two modes, i.e., continuous DMA,
which fetches one continuous data block for each CPE, and strided
DMA, which fetches several blocks of the fixed size (𝑏𝑠𝑖𝑧𝑒) with a
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Figure 3: Measured DMA bandwidth for one CPE cluster.

fixed stride (𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒) (Figure 4(a)). In either case, the amount of

data that are fetched into SPM is denoted as 𝐷𝑀𝐴𝑠𝑖𝑧𝑒 .

The above data fetching operations, i.e., continuous DMA,

strided DMA, and 𝑔𝑙𝑑/𝑔𝑠𝑡 , exhibit different bandwidth utilization.

In particular, continuous DMA can obtain a near-theoretical-peak

bandwidth (28GB/s for each CPE cluster) when the data exceeds

1KB and is 256B-aligned (shown in Figure 3). Strided DMA will

significantly reduce the bandwidth utilization when the block size

(𝑏𝑠𝑖𝑧𝑒) is small, e.g., only 0.3GB/s when 𝑏𝑠𝑖𝑧𝑒 is 4B. Finally, 𝑔𝑙𝑑/𝑔𝑠𝑡

can achieve the bandwidth of about 1.6GB/s [64].

To measure the bandwidth utilization, we define the effective
bandwidth (𝑏𝑤𝑒 𝑓 𝑓 ) as its measured bandwidth 𝑏𝑤 multiplied by

the ratio of useful data volume 𝑣𝑜𝑙𝑢𝑚𝑒𝑢𝑠𝑒 𝑓 𝑢𝑙 over all transferred

data volume 𝑣𝑜𝑙𝑢𝑚𝑒𝑎𝑙𝑙 :

𝑏𝑤𝑒 𝑓 𝑓 = 𝑏𝑤 × 𝑟𝑒 𝑓 𝑓 , where 𝑟𝑒 𝑓 𝑓 =
𝑣𝑜𝑙𝑢𝑚𝑒𝑢𝑠𝑒 𝑓 𝑢𝑙

𝑣𝑜𝑙𝑢𝑚𝑒𝑎𝑙𝑙
(1)

3.1.1 Benchmarking DMA. For continuous DMA and 𝑔𝑙𝑑/𝑔𝑠𝑡 , the

effective bandwidth can be determined. However, for strided DMA,

it varies with𝑏𝑠𝑖𝑧𝑒 . We have thus designed a set of micro-benches to

benchmark strided DMA, by using hardware DMA primitives. Our

benchmarking is for one CG, in particular, we let its 64 CPEs launch

the same DMA operations on data with different base addresses

in order to simulate the OpenCL SPMD model, and we record the

maximum execution time for computing the bandwidth.

Figures 4(b)-(f) show the results of various 𝑏𝑠𝑖𝑧𝑒 and 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 (𝑠).
When 𝑏𝑠𝑖𝑧𝑒 is larger than 1KB, it can be treated as a set of continu-

ous DMAs, and a relatively high DMA bandwidth (22GB/s) can be

achieved. However, a smaller 𝑏𝑠𝑖𝑧𝑒 significantly reduces the effec-

tive bandwidth, e.g., only 0.3GB/s when 𝑏𝑠𝑖𝑧𝑒 = 4𝐵.

The bandwidth behavior for multiple DMA is modeled by synthe-

sizing a set of 𝑛 continuous DMA operations, with the 𝑖𝑡ℎ operation

𝐷𝑀𝐴𝑖 having the size of 𝑑𝑚𝑎_𝑠𝑖𝑧𝑒𝑖 (𝑖 = 0, 1, ..𝑛 − 1). The measured

bandwidth results are shown in Figure 5, plotted as the green line,

which demonstrates that near-theoretical-peak (28GB/s) value can

be obtained when 𝑑𝑚𝑎_𝑠𝑖𝑧𝑒 exceeds 1KB.

Furthermore, for each𝐷𝑀𝐴𝑖 , we randomly split it into𝑘 multiple

DMA operations (𝑘 = 2..6, respectively), i.e., 𝐷𝑀𝐴
𝑗
𝑖
, where 𝑖 =

0..𝑛 − 1, 𝑗 = 1..𝑘 , satisfying
𝑑𝑚𝑎_𝑠𝑖𝑧𝑒𝑖 =

∑𝑘

𝑗=1
𝑑𝑚𝑎_𝑠𝑖𝑧𝑒

𝑗
𝑖

𝑑𝑚𝑎_𝑠𝑖𝑧𝑒
𝑗
𝑖
> 1𝐾𝐵

(2)

and compute the bandwidth using the execution time of all the DMA

operations. The measured bandwidth for the 𝑘 DMA operations is

bsize stepsize
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Figure 4: DMA bandwidth of strided modes.
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plotted as the dots in Figure 5, with five different colors for 𝑘 = 2..6,

respectively.

The results demonstrate that when multiple DMA operations

are simultaneously executed, they can be aggregated to occupy the

bandwidth, and near-peak bandwidth (28GB/s) can be obtained.

3.2 Decision Tree for Data Fetching
According to the bandwidth behavior model, we create a decision

tree for selecting the optimal data moving operation to insert into

the tiled loop nest, for maximizing the effective bandwidth.

• For a continuous memory access, we generate a continuous

DMA operation for the accesses in the innermost loop nest.

Furthermore, if the data volume accessed in the innermost

loop nest is less than 1KB, the DMA operations from adja-

cent iterations of the innermost loop nest can be aggregated
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Figure 7: Decision tree for data fetching, in which decisions
with dots apply to reading only.

together, into a strided DMA operation. Effective bandwidth

can thus be increased since DMA startup costs are reduced.

• For a strided memory access, in some certain cases, we can

fetch the useless stride data and use a continuous DMA

operation for efficient bandwidth utilization, even if some

SPM capacitywill bewasted. In particular, for a strided access

with the total volume 𝑎𝑐𝑐𝑣𝑜𝑙 , we use the continuous DMA

operation if 𝑟𝑒 𝑓 𝑓 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑏𝑠𝑖𝑧𝑒, 𝑎𝑐𝑐𝑣𝑜𝑙), where 𝑟𝑒 𝑓 𝑓 =

𝑏𝑠𝑖𝑧𝑒/(𝑏𝑠𝑖𝑧𝑒 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒) and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is computed using

Figure 6(a), otherwise we use the strided DMA operation.

Here, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is selected using the constant value marked

for each 𝑏𝑠𝑖𝑧𝑒 .

• For an irregular memory access reading 𝑁𝑎𝑐𝑐 locations with

each location accessing 𝑁𝑏𝑦𝑡𝑒 data, we use a continuous

DMA operation when 𝑁𝑎𝑐𝑐 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑁𝑏𝑦𝑡𝑒 , 𝐷𝑀𝐴𝑠𝑖𝑧𝑒),
where 𝐷𝑀𝐴𝑠𝑖𝑧𝑒 is the range of locations of all 𝑁𝑎𝑐𝑐 accesses

times 𝑁𝑏𝑦𝑡𝑒 , and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is computed using Figure 6(b).

Thus the benefit obtained due to more efficient bandwidth

utilization would outweigh the cost of fetching useless data.

Otherwise, we would use the 𝑔𝑙𝑑 instruction.

Figure 7 shows the final decision tree, in which the decision for

continuous and strided accesses can be determined at compile-time,

while for irregular accesses, some conditional branches are inserted

into the generated tiled codes for determining the data fetching

operations at runtime, as discussed in Section 4.

3.3 Tile Size Selection Model
After the optimal data fetching operations have been determined,

the optimal tile size can be selected according to the SPM capacity.

In particular, we compute the working set size𝑤𝑠 for the tiled loop

nest, by accumulating the 𝐷𝑀𝐴𝑠𝑖𝑧𝑒 for all data moving operations,

and𝑤𝑠 can be represented as a function of the tile size 𝑡𝑠 . Therefore,
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Figure 8: Compilation framework of bandwidth-aware loop
tiling, in which a dynamic part is generated to tackle irreg-
ular accesses at runtime (by lines marked brown).

we select the optimal tile size using

opt_ts =𝑚𝑎𝑥{𝑡𝑠 |𝑤𝑠 (𝑡𝑠) ≤ 𝐶} (3)

where 𝐶 is the SPM capacity.

When computing the working set size under a given tile size 𝑡𝑠 ,

i.e.,𝑤𝑠 (𝑡𝑠), we traverse each memory object (__𝑔𝑙𝑜𝑏𝑎𝑙 ) access. For

a continuous or strided access, its 𝐷𝑀𝐴𝑠𝑖𝑧𝑒 can be directly aggre-

gated into 𝑤𝑠 (𝑡𝑠). However, for an irregular access, e.g., A[B[𝑖]],
the𝐷𝑀𝐴𝑠𝑖𝑧𝑒 for B can be statically determined as 𝑡𝑠×𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐵 [𝑖]),
while the 𝐷𝑀𝐴𝑠𝑖𝑧𝑒 for A cannot be statically determined. For sim-

plicity, we assume it as 𝑡𝑠 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐴[𝑖]) statically, and re-tile the

loop nest for A at runtime when necessary, as discussed in Section 4.

3.4 Generalization to New Platforms
Bandwidth-aware loop tiling can apply to a platform with a DMA-

supported SPM, since such a platform requires both capacity and

bandwidth to be considered simultaneously. When applying the

above three steps (Section 3.1 – 3.3), we only need to re-design

the set of micro-benchmarks and model the bandwidth behavior

(Section 3.1). The other two steps can be reused,as the decision

tree (Section 3.2) and the tile size selection model (Section 3.3)

are automatically created. Furthermore, the final code will also be

automatically generated as described in Section 4.

4 BANDWIDTH-AWARE LOOP TILING
FRAMEWORK

4.1 Framework Overview
The framework of bandwidth-aware loop tiling includes six com-

ponents, as shown in Figure 8. Briefly, each work-group loop is

analyzed by the Access Pattern Analyzer to divide array accesses

into regular and irregular accesses. In particular, group references

without dependencies are treated as accesses to different arrays on

SPM, and those with dependencies are excluded from SPM. For reg-

ular accesses, they are fed into the Fetching Decision Engine to select
an optimal data fetching operation statically, and the Tile Size Se-
lector determines the optimal tile size, and the Parameterized Tiling
Module generates the parameterized tiled codes following [52]. For

irregular accesses, theMemory Access Monitor instruments the loop

nest to collect the accessed addresses at runtime, and explores the

Fetching Decision Engine to determine the optimal fetching oper-

ation on-the-fly, and finally the Dynamic Tiling Engine generates
corresponding DMA operations and reduces the tile size when

necessary.
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Figure 9: CFG for a work-group loop after tiling, with BBs
inserted marked light yellow, including a static part (lines
in black) and a dynamic part (lines in red).

4.2 Generated Tiled Code
Figure 9 shows a skeleton of the generated tiled codes, including

a static part generated by the parameterized tiling module and a

dynamic part generated by the memory access monitor and the

dynamic tiling engine. Conceptually, the dynamic part works in a

way similar as the classical inspector/executor method [44, 60].

For a regular access, first, it generates codes for computing the

tile size using equation 3, shown as the decision BB. Second, it
generates the parameterized tiled loop nest following [52], shown

as the body BB. Finally, it generates the DMA operations selected

according to the decision tree, shown as the 𝑝𝑟𝑜𝑙𝑜𝑔/𝑒𝑝𝑖𝑙𝑜𝑔𝐵𝐵𝑠 .
For an irregular access A[B[𝑖]], when computing the working

set, we regard 𝑡𝑠×𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐴[𝑖]) and 𝑡𝑠×𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐵 [𝑖]) as the working
set sizes for A and B, respectively, and thus statically reserve the

corresponding space on SPM for them. However, if the accesses of

A are collected by the get idx & group BB and fed to the decision

tree, which determines to use DMA operations for data moving,

some extra useless data will be fetched, occupying extra SPM space

thus the 𝑡𝑠×𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐴[𝑖]) space is not enough. In this case, 𝑡𝑠 would
be too large to keep the working set of one tile on SPM. Therefore,

we need to decrease the tile size and re-tile the loop nests of one

tile processing. We call this process as subtiling.
When applying subtiling, the new tile size is selected by recur-

sively reducing it by half until the capacity constraint is satisfied.

Then the body BB is re-tiled to generate the subtiled codes (for A).

The subtile codes includes dynamically inserted DMA operations

(D-prolog BB) and the computation codes (compt BB).
In particular, the instructions for DMA and subtiling are gener-

ated statically at compile time. These instructions are encapsulated

in an if-statement and inserted into kernel codes, representing differ-

ent code paths in the same CFG. At run time, when the if-condition

is satisfied, these instructions will be executed.

5 TILINGWITH CROSS-HOST-KERNEL IPA
As described in Section 3, irregular accesses (𝐸𝑙𝑚 in Figure 1) can

significantly benefit from being grouped into DMA operations.

However, a necessary prerequisite is to analyze the memory ad-

dresses of these irregular accesses. Typically, we determine the

addresses at runtime, obtaining the sub-tiling discussed in Sec-

tion 4. If we can analyze the values of the subscripts of irregular

accesses, we can determine the tile size statically to eliminate the

__kernel foo (__global float* Elm, __global int* Nbr, ...) {
        lid = get_local_id(0);
        … = a * Elm[Nbr[2*lid]] + b * Elm[Nbr[2*lid+1]] … 
}

main (...) {
      cl_mem  d_nbr;
      int* h_nbr[2*N];
      for (i=0; i<N; i++) {
          h_nbr[2*N] = i/2;
          h_nbr[2*N+1] = i + N;
      }
      clWriteBuffer(d_nbr, h_nbr, 2*N*sizeof(int));
      clSetKernelArg(foo, 1, &d_nbr);
      clEnqueueNDRangeKernel(foo,...);
}

(a) An example (abstracted from SPECACCEL/lavamd)
that values of 𝑁𝑏𝑟 can be analyzed from host codes.

Dynamic Fetching

Elm

1 DMA generated at compile-time

Nbr

2 DMAs generated at run-time

(b) Without IPA.

Static Fetching

Elm

Computed instead of fectched

Nbr

2 DMAs generated at compile-time

(c) With IPA.

Figure 10: Cross-host-kernel IPA can help to analyze the ir-
regular access patterns
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Figure 11: The Compilation flow of SWCL.

cost of sub-tiling. However, as these values are typically computed

in the host codes, a a cross-host-kernel analysis is performed.

Figure 10 shows an example, with (a) listing the codes. In partic-

ular, (b) shows the result of bandwidth-aware tiling without any

cross-host-kernel analysis, which first fetches 𝑁𝑏𝑟 into SPM to

get the values, determines which elements of 𝐸𝑙𝑚 will be used,

and finally performs sub-tiling to determine the tile size. All these

steps are performed at runtime. However, (c) shows the results with

our cross-host-kernel analysis, where the values of 𝑁𝑏𝑟 are ana-

lyzed statically. Thus, the workset of 𝐸𝑙𝑚 can also be determined

statically, without introducing any runtime cost any more.

For the cross-host-kernel analysis, we propose a parameter-

guided interprocedural analysis algorithm.

5.1 Parameter-guided Interprocedural Analysis
SWCL creates fused IRs from the host IRs and the kernel IRs, on

which DMA-bandwidth-aware loop tiling is performed, as shown

in Figure 11. After that, the optimized IRs are fed into the llvm-cbe

tool [1] to generate optimized C/C++ codes with Athread library

APIs, which are then compiled by the native C/C++ compiler (sw5cc)

to produce executables.

When analyzing the fused IRs, our key insight is that we can

focus only on those memory objects that have the type of 𝑐𝑙_𝑚𝑒𝑚
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     f()     {
b16:  clEnqueueWriteBuffer(A,...);
     }

     g(void* x)     {
b17:  clSetKernelArg(k1,0,&A);
b18: clSetKernelArg(k1,1,x);
b19: clEnqueueNDRangeKernel(k1);
     }

__kernel k2(__global int* T, S) {
    S[tid]=S[tid]+T[tid]...;
}

     cl_mem A;
     main()     {
         cl_mem B;
b1:    (void*)p=(void*)&B;
b2:   if(...)    f(); 
        else
b3:   clEnqueueWriteBuffer(A,...);
    
b4:   g(p);  
b5:   if(...)   p=(void*)A;
b6:   h(p);
b7:   clEnqueueReadBuffer(A,...);
     }

     h(void* y)     {
        cl_mem C;
b8:   clEnqueueWriteBuffer(C,...);
b9:   (void*)z=cond?y:(void*)C;

b10:  clSetKernelArg(k2,0,y);
b11:   clSetKernelArg(k2,1,&C);
b12:  clEnqueueNDRangeKernel(k2);

b13:  clSetKernelArg(k1,0,z);
b14:  clSetKernelArg(k1,1,&A);
b15:  clEnqueueNDRangeKernel(k1);
     }

__kernel k1(__global int* M, N) {
    if(...)
        N[tid]=M[tid]...;
}

(a) Host and kernel source codes.

main

g

h
f

k1 k2

(b) Call graph.

Figure 12: An example for parameter-guided IPA.

and would be passed as actual parameters for launching some ker-

nel. According to the OpenCL semantics, only these objects can

be accessed by both host and kernel codes. We call such objects

as parameter-obj candidates, and pointers that may point to those

objects as parameter-obj candidate pointers. For this purpose, SWCL

performs a parameter-guided interprocedural analysis (IPA) to ana-

lyze parameter-obj candidates and corresponding pointers.

Our parameter-guided IPA is designed based on the classical

IPA [2], while makes two adjustments according to the OpenCL

semantics. First, the analysis is confined to only parameter-obj can-

didates (and pointers). Second, the analysis leverages the semantic

difference between host and kernel codes, e.g., the pointers in ker-

nel codes are restricted according to [23], all function calls inside

kernels will be inlined except built-in functions, and the host codes

can only modify parameter-obj candidates (and pointers) and pass

parameters to kernels via certain OpenCL APIs.

SWCL performs the parameter-guided IPA in three steps. (1)

Generating fused IRs. The kernel compiler sends the generated

kernel IRs to the host compiler via inter-process communication.

Then the host compiler merges the received kernel IRs into the

host IRs, to create fused IRs (without inlining) and the correspond-

ing call graph. (2) Computing transfer functions (i.e., summaries).

The host compiler performs a bottom-up traversing to the call

graph and calculates the transfer function for summarizing the

effect of each node, according to the corresponding node type. (3)

Context-sensitive analysis. The host compiler performs a top-down

context-sensitive analysis on the call graph, to propagate the caller

information and get the global analysis results.

5.1.1 Generating Fused IRs. The host compiler and kernel compiler

work coordinately to generate fused IRs.

The kernel compiler explicitly generates two-level loop iterations

for traversing the work groups (the work-group loop) and the work

items inside one work group (the nested work-item loop), as shown
in Figure 13, and sends the obtained IRs to the host compiler via

share-memory.

The host compiler merges the received kernel IRs into the host

IRs, and generates the fused IRs. In particular, each instruction that

has a host function call or kernel launching is expanded into a new

1  void example_kernel (...) {

2    CPE_begin = CPE_id * ceil(wg_num/64);

3    CPE_end = min(CPE_begin + ceil(wg_num/64), wg_num);

4    for (__group_id = CPE_begin; __group_id < CPE_end; __group_id++)  //work-group loop

5      for (__local_id_z = 0; __local_id_z < local_size[2]; __local_id_z++)  //nested work-item loop

6        for(__local_id_y = 0; __local_id_y < local_size[1]; __local_id_y++)

7           for(__local_id_x = 0; __local_id_x < local_size[0]; __local_id_x++)

8             …; }  //work-item body

Figure 13: Thework-group loop and thenestedwork-item loop
executed on each CPE.

Table 1: Summary of each function for codes in Figure 12(a).

𝑛 𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 𝑙𝑖𝑣𝑒𝑛 .{MOD,REF,KILL} 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛

𝑘1 {M,N} {01, 10, 00} ∅
𝑘2 {T,S} {01, 11, 01} ∅
𝑓 {A} {1, 0, 1} {𝑏16}
𝑔 {A,𝑥 } {01, 10, 00} {∅, {𝑏19}}
ℎ {A,𝑦} {10, 01, 00} {{𝑏15}, ∅}

𝑚𝑎𝑖𝑛 {A} {1, 1, 1} {𝑏3, 𝑏16, 𝑏15}

BB, which is referred to as a call site BB. Meanwhile, the call graph

is created, as shown in Figure 12.

5.1.2 Computing Summaries. The summary of a host function

or kernel 𝑛, denoted as 𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑛 , indicates which parameter-obj

candidates (and pointers) are modified/referenced/killed in it, which

contains three issues:

• 𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 , represents the set of parameter-obj candidates

(and pointers) that are externally visible when calling 𝑛.

• 𝑙𝑖𝑣𝑒𝑛 , is defined as three bit vectors MOD,REF and KILL, with
each bit representing one parameter-obj (or pointer) in

𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 . MOD𝑖 , REF𝑖 and KILL𝑖 are set to 1 when 𝑑𝑖 ∈
𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 is possibly modified, possibly used, and definitely

killed by calling 𝑛, respectively.

• 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛 , tracks the definition points for the parameter-

obj candidates (and pointers), which is a set {𝐴𝑖 |𝑖 = 0, 1, ...

𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 .𝑠𝑖𝑧𝑒 () − 1}, with each 𝐴𝑖 being a set of BBs that

may include the definitions of 𝑑𝑖 ∈ 𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 by calling 𝑛.

If 𝑛 is a kernel (which is a leaf node in the call graph), the set

of its parameter-obj candidates 𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 is defined as its formal

parameters declared with __𝑔𝑙𝑜𝑏𝑎𝑙 , and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛 is set to ∅. Table 1
shows the summaries for Figure 12(a) (𝑘1 and 𝑘2 are kernels).

If 𝑛 is a host function, things are a bit more complicated, as its

𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 can consist of three types of objects:

• typeA: An object with the type of 𝑐𝑙_𝑚𝑒𝑚, which is either

a global variable or one of 𝑛’s formal parameters / return

values.

• typeB: A pointer that can be resolved in 𝑛 to determine that

it points to an object of typeA.
• typeC: A pointer that cannot not be resolved in 𝑛.

Algorithm 1 computes the summary for a host function. First,

typeA and typeC are added into𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 (line 3). Second, we call

the function of 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑎𝑟𝑂𝑏 𝑗 to summarize the external visible

effects of 𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 (line 4), which traverses all BBs seeking for

function call instructions that define or use ∀𝑑𝑖 ∈ 𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 , by ex-

tracting the actual parameters 𝑎𝑐𝑡𝑢𝑎𝑙 (𝑛 → 𝑘) and applying param-

eter binding from 𝑙𝑖𝑣𝑒𝑘 .MOD/REF to them (line 15). Thus the actual
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parameters belonging to𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛 are considered to have external

visible definitions/uses (line 16). Meanwhile, if some OpenCL APIs

are called, the analysis leverages the corresponding semantics (lines

19-27). Third, a typical iterative dataflow analysis is performed to

compute 𝑙𝑖𝑣𝑒𝑛 , and for ∀𝑑𝑖 ∈ 𝑤𝑜𝑟𝑘𝑠𝑒𝑡 , a set of BBs whose definition
reaches out of the function are recorded in 𝑙𝑜𝑐𝑛 (𝑖) (line 5). Finally,
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛 is set by updating all call host BBs in 𝑙𝑜𝑐𝑛 (line 6).

Let’s take the host function ℎ in Table 1 for example, with global

𝑐𝑙_𝑚𝑒𝑚 A and formal parameter 𝑦 added into𝑤𝑜𝑟𝑘𝑠𝑒𝑡ℎ . In the call

to 𝑘2 at 𝑏12, 𝑎𝑐𝑡𝑢𝑎𝑙 (ℎ → 𝑘2) = {𝑦,C} and 𝑙𝑖𝑣𝑒𝑘2 .MOD =01, but

C ∉ 𝑤𝑜𝑟𝑘𝑠𝑒𝑡ℎ , hence 𝑑𝑒 𝑓 (𝑏12) = 00 (𝑢𝑠𝑒 (𝑏12) = 01, 𝑘𝑖𝑙𝑙 (𝑏12) = 00).

Similarly, for the call to 𝑘1 at 𝑏15, 𝑑𝑒 𝑓 (𝑏15) = 10 (𝑢𝑠𝑒 (𝑏15) = 10,

𝑘𝑖𝑙𝑙 (𝑏15) = 00). Data-flow results at exit ofℎ lead to 𝑙𝑖𝑣𝑒ℎ={10,01,00},

and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛ℎ = {{𝑏15}, ∅}.

5.1.3 Context-Sensitive Analysis. After the bottom-up summary

computation (Section 5.1.2), SWCL performs a forward data-flow

analysis by traversing the call graph top-down to propagate con-

texts from the callsites to the callees. In particular, the top-down

phase analyzes all the objects that may be used as actual parameters

in 𝑛 for calling other functions, i.e., 𝑝𝑎𝑟𝑜𝑏 𝑗𝑛 , including 𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛
and some local memory objects, e.g., C in function ℎ in Figure 12(a).

Algorithm 1 Compute host summaries

1: 𝑊𝑠 (𝑛)/𝐿𝑖𝑣𝑒 (𝑛)/𝐿𝑜𝑐 (𝑛) : Map(𝑛,𝑤𝑜𝑟𝑘𝑠𝑒𝑡𝑛/𝑙𝑖𝑣𝑒𝑛/𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑛 )

2: procedure SumHost(IR 𝑛)

3: 𝑊𝑠 (𝑛) ← {𝑐𝑙_𝑚𝑒𝑚/𝑣𝑜𝑖𝑑∗ in 𝑛’s formals/ret-val or global}

4: 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑎𝑟𝑂𝑏 𝑗 (𝑛,&𝑑𝑒𝑓 ,&𝑢𝑠𝑒)
5: 𝐿𝑖𝑣𝑒 (𝑛) ← 𝐷𝑎𝑡𝑎𝐹𝑙𝑜𝑤𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝑛,𝑑𝑒 𝑓 ,𝑢𝑠𝑒,&𝑙𝑜𝑐𝑛)
6: 𝐿𝑜𝑐 (𝑛) ← 𝑇𝑟𝑎𝑐𝑘𝐶𝑎𝑙𝑙 (𝑙𝑜𝑐𝑛,𝑊 𝑠 (𝑛)) /* If a def point in
7: 𝑙𝑜𝑐𝑛 is a call host BB, update it with callee’s info */

8: end procedure
9: procedure GlobalParObj(IR 𝑛, Map &𝑑𝑒𝑓 ,&𝑢𝑠𝑒)

10: 𝐼𝑛𝑡𝑟𝑎𝑃𝑜𝑖𝑛𝑡𝑇𝑜𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝑛)
11: for all CallsiteBB 𝑏𝑏 with callee 𝑘 in 𝑛 do
12: /* 𝑎𝑐𝑡𝑢𝑎𝑙 (𝑛 → 𝑘) : actual args when 𝑛 calls 𝑘 */

13: /* Let [set 𝐴 ↦→ set 𝐵] yield a set𝐶 with 𝐵.𝑠𝑖𝑧𝑒 () ,
14: and𝐶𝑖 = 𝐵𝑖 if 𝐵𝑖 ∈ 𝐴,𝐶𝑖 = 0 otherwise */

15: 𝑚𝑜𝑑𝑎𝑐𝑡 ← 𝐿𝑖𝑣𝑒 (𝑘) .MOD & 𝑎𝑐𝑡𝑢𝑎𝑙 (𝑛 → 𝑘)
16: 𝑑𝑒𝑓 (𝑏𝑏) .𝑔𝑒𝑡 ( [𝑚𝑜𝑑𝑎𝑐𝑡 ↦→𝑊𝑠 (𝑛) ]) = 1

17: /* 𝑢𝑠𝑒 (𝑏𝑏) : similarly by 𝐿𝑖𝑣𝑒 (𝑘) .USE */

18: end for
19: for all BB 𝑏𝑏 calls clEnqueueWriteBuffer() do
20: 𝑑 ← 𝑐𝑎𝑙𝑙_𝑎𝑟𝑔 (1) /* 𝑑 is written */

21: if 𝑑 ∈𝑊𝑠 (𝑛) /* typeA and typeC */ then
22: 𝑑𝑒𝑓 (𝑏𝑏) .𝑔𝑒𝑡 (𝑑) = 1

23: else if 𝑑.𝑝𝑜𝑖𝑛𝑡𝑡𝑜 () ∩𝑊𝑠 (𝑛) ≠ ∅ /* typeB */ then
24: 𝑑𝑒𝑓 (𝑏𝑏) .𝑔𝑒𝑡 (𝑑.𝑝𝑜𝑖𝑛𝑡𝑡𝑜 ()) = 1

25: end if
26: end for
27: /* 𝑢𝑠𝑒 (𝑏𝑏) : similarly by clEnqueueReadBuffer() */
28: end procedure

For a call site 𝑐𝑠:𝑛 → 𝑘 , its context includes a bit vector 𝑐𝑡𝑥𝑐𝑠
and a set of definition points 𝑐𝑡𝑥𝑙𝑜𝑐𝑐𝑠 , denoting whether and where

𝑎𝑐𝑡𝑢𝑎𝑙 (𝑛 → 𝑘) are defined. During the top-down traversal, Algo-

rithm 2 is used to compute contexts of all call sites in function 𝑛.

First, contexts from all 𝑛’s callers are unified as reaching definitions

at 𝑛’s entry (lines 3-8), and then data-flow analysis on 𝑝𝑎𝑟𝑜𝑏 𝑗𝑛 is

Table 2: Context of each call site for codes in Figure 12(a).

𝑐𝑠 : 𝑛 → 𝑘 𝑝𝑎𝑟𝑜𝑏 𝑗𝑛 𝑐𝑡𝑥𝑐𝑠 𝑐𝑡𝑥𝑙𝑜𝑐𝑐𝑠

𝑏2 :𝑚𝑎𝑖𝑛 → 𝑓 {A,B} 0 ∅
𝑏4 :𝑚𝑎𝑖𝑛 → 𝑔 {A,B} 10 {{𝑏16, 𝑏3}, ∅}
𝑏6 :𝑚𝑎𝑖𝑛 → ℎ {A,B} 11 {{𝑏16, 𝑏3}, {𝑏16, 𝑏3, 𝑏19}}
𝑏19 : 𝑔 → 𝑘1 {A,𝑥 } 10 {{𝑏16, 𝑏3}, ∅}}
𝑏12 : ℎ → 𝑘2 {A,𝑦,C} 11 {{𝑏16, 𝑏3, 𝑏19}, {𝑏8}}}

𝑏15 : ℎ → 𝑘1 {A,𝑦,C} 11

{{𝑏16, 𝑏3, 𝑏19, 𝑏12},
{𝑏16, 𝑏3}}}

Tiled work-item loop:

1    float* _spm_Elm1[ts/2];  /*ts: tile size*/
2   float* _spm_Elm2[ts];
3   for (t = 0; t < local_size[0]/ts + 1 ; t ++) {
4         _base_addr1 = t*ts/2;   /*Obtained by host codes analysis*/
5         _base_addr2 = t*ts + N;
6         DMA_get (_spm_Elm1, Elm[_base_addr1], (ts/2) * sizeof(float));
7         DMA_get (_spm_Elm2, Elm[_base_addr2], ts * sizeof(float));
8         for (lid = t * ts; lid < (t+1)*ts && lid < local_size[0]; lid++) {
9               idx1 = lid/2;  idx2=lid;       /*Inserted according to host codes*/
10             … = a * _spm_Elm1[idx1-_base_addr1] + b * _spm_Elm2[idx2-_base_addr2];
11       }
12  }

Figure 14: Tiling codes generated with cross-host-kernel
analysis for codes in Figure 10(a).

performed by processing summaries of 𝑛’s callees and identify-

ing clEnqueueWriteBuffer() (lines 9-16). After that, the context for
𝑐𝑠:𝑛 → 𝑘 is set to definitions of 𝑎𝑐𝑡𝑢𝑎𝑙 (𝑛 → 𝑘) reaching 𝑐𝑠 (lines
17-28). In particular, unresolved pointers in 𝑘 (typeB) are processed
(lines 20-22), e.g., if 𝑝.𝑝𝑜𝑖𝑛𝑡𝑡𝑜 () is 𝑐𝑙_𝑚𝑒𝑚 {A,B} at 𝑐𝑠 , the reaching

definitions of A and B are inserted into the context for 𝑐𝑠:𝑛 → 𝑘 .

Table 2 shows contexts of each call site in Figure 12(a).

5.2 Benefit to Loop Tiling
The parameter-guided IPA helps enhance the performance benefit

of loop tiling, from two aspects.

First, it helps exploit static tiling opportunity for irregular accesses,
thus avoiding the cost of runtime memory access monitoring and
dynamic tiling. In Figure 10(a), the address range of B[A[i]] may be

determined at compile-time, thus the DMA operations for fetching

B are independent of the A[i]’s individual value. Figure 14 shows

the generated tiled codes, where the values of 𝑁𝑏𝑟 [2 × 𝑙𝑖𝑑] and
𝑁𝑏𝑟 [2 × 𝑙𝑖𝑑 + 1] are 𝑙𝑖𝑑/2 and 𝑁 + 𝑙𝑖𝑑 respectively, hence 𝐸𝑙𝑚 can

be fetched using two DMA operations (lines 6-7).

Second, it helps select some candidates for re-computing before they
are used, without occupying SPM space, potentially increasing the tile
size and decreasing DMA operations. In Figure 14, _𝑏𝑎𝑠𝑒_𝑎𝑑𝑑𝑟1 and

_𝑏𝑎𝑠𝑒_𝑎𝑑𝑑𝑟2 can be re-computed immediately before they are used,

thus 𝑁𝑏𝑟 in Figure 10(a) does not need to be fetched to SPM any

further (line 9).

We traverse the IR to seek for the above two optimization oppor-

tunities. An the irregular access A[B[i]] in kernel𝑘 can be optimized

if all the following conditions are satisfied:

• B is not modified by 𝑘 , i.e., 𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑘 .MOD.𝑔𝑒𝑡 (B)=0.
• 𝑐𝑡𝑥𝑙𝑜𝑐𝑐𝑠 .𝑔𝑒𝑡 (B) = {𝑏𝑏} for all 𝑐𝑠 launching 𝑘 .
• 𝑏𝑏 is a host BB and defines B with values of a host array hB

using clEnqueueWriteBuffer.
• hB is calculated element-wise in a loop nest 𝑙 using scalars,

and without loop-carried dependencies.
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Algorithm 2 Context-sensitive Analysis

1: 𝐶𝑡𝑥/𝐶𝑡𝑥𝐿𝑜𝑐 :Map(𝑐𝑠 ,𝑐𝑡𝑥𝑐𝑠 /𝑐𝑡𝑥𝑙𝑜𝑐𝑐𝑠 )

2: procedure CtxSensitiveAnalysis(IR 𝑛)

3: for all CallSiteBB 𝑐𝑠 calls 𝑛 do
4: 𝑐𝑡𝑥𝑐𝑎𝑙𝑙𝑒𝑟 ← 𝑐𝑡𝑥𝑐𝑎𝑙𝑙𝑒𝑟 | 𝐶𝑡𝑥 (𝑐𝑠)
5: 𝑙𝑜𝑐𝑐𝑎𝑙𝑙𝑒𝑟 ← 𝑙𝑜𝑐𝑐𝑎𝑙𝑙𝑒𝑟 ∪𝐶𝑡𝑥𝐿𝑜𝑐 (𝑐𝑠)
6: end for
7: 𝐷𝑖𝑛 (𝑛.𝑒𝑛𝑡𝑟𝑦 () ← (𝑐𝑡𝑥𝑐𝑎𝑙𝑙𝑒𝑟 , 0...0) /* 𝐷𝑖𝑛 : Def reach in */

8: 𝐿𝑂𝐶 (𝑛.𝑒𝑛𝑡𝑟𝑦 ()) .𝑔𝑒𝑡 (𝑊𝑠 (𝑛)) ← 𝑐𝑡𝑥𝑙𝑜𝑐𝑐𝑎𝑙𝑙𝑒𝑟
9: 𝑃𝑎𝑟𝑜𝑏 𝑗 (𝑛) ←𝑊𝑠 (𝑛) ∪ {all local 𝑐𝑙_𝑚𝑒𝑚 A in 𝑛}

10: 𝐴𝑛𝑎𝑙𝑦𝑧𝑒𝑃𝑎𝑟𝑂𝑏 𝑗 (𝑛,&𝑔𝑒𝑛,&𝑘𝑖𝑙𝑙) /* Obtain 𝑔𝑒𝑛/𝑘𝑖𝑙𝑙 on
11: 𝑃𝑎𝑟𝑜𝑏 𝑗 (𝑛) for each BB by summaries and OclAPIs */

12: Iterative DFA with 𝐷𝑖𝑛 (𝑛.𝑒𝑛𝑡𝑟𝑦 ()) and 𝑔𝑒𝑛/𝑘𝑖𝑙𝑙
13: /* and obtain 𝐿𝑂𝐶 :Map(BB, Set[defpoints]) in analysis */

14: for all CallHostBB 𝑐ℎ do
15: 𝐿𝑂𝐶 (𝑐ℎ) ← 𝑇𝑟𝑎𝑐𝑘𝐶𝑎𝑙𝑙𝐿𝑜𝑐 (𝐿𝑂𝐶 (𝑐ℎ), 𝑃𝑎𝑟𝑜𝑏 𝑗 (𝑛))
16: end for /* Same as line 6 in algorithm 1 */

17: for all CallSiteBB 𝑐𝑠 in 𝑛 with callee 𝑘 do
18: for all ActualArg 𝑎𝑎 ∈ 𝑎𝑐𝑡𝑢𝑎𝑙 (𝑛 → 𝑘) do
19: if 𝑎𝑎 is pointer and 𝑎𝑎 ∉ 𝑓 𝑜𝑟𝑚𝑎𝑙𝑠 (𝑛) then
20: 𝑝𝑡 ← 𝑎𝑎.𝑝𝑜𝑖𝑛𝑡𝑡𝑜 () /* typeC for 𝑘 */

21: 𝐶𝑡𝑥 (𝑐𝑠) .𝑔𝑒𝑡 (𝑎𝑎) ← ⋃
𝑝∈𝑝𝑡 𝐷𝑖𝑛 (𝑐𝑠) .𝑔𝑒𝑡 (𝑝)

22: 𝐶𝑡𝑥𝐿𝑜𝑐 (𝑐𝑠) .𝑔𝑒𝑡 (𝑎𝑎) ← ⋃
𝑝∈𝑝𝑡 𝐿𝑂𝐶 (𝑐𝑠) .𝑔𝑒𝑡 (𝑝)

23: else
24: 𝐶𝑡𝑥 (𝑐𝑠) .𝑔𝑒𝑡 (𝑎𝑎) ← 𝐷𝑖𝑛 (𝑐𝑠) .𝑔𝑒𝑡 (𝑎𝑎)
25: 𝐶𝑡𝑥𝐿𝑜𝑐 (𝑐𝑠) .𝑔𝑒𝑡 (𝑎𝑎) ← 𝐿𝑂𝐶 (𝑐𝑠) .𝑔𝑒𝑡 (𝑎𝑎)
26: end if
27: end for
28: end for
29: end procedure

The analysis in IPA is currently conservative to guarantee the

safety of the optimizations enabled, and more optimization oppor-

tunities can be potentially found with more precise analysis.

6 EVALUATION
We have implemented SWCL on LLVM-v9.0 using Clang-v3.9 as

the front-end to produce LLVM IR and llvm-cbe [1] as the backend

to generate C/C++ codes with Athread library APIs, which are com-

piled and linked by sw5cc (-O3).All our experiments are performed

on one CG of SW26010 on Sunway TaihuLight, with the details

discussed in Section 2.1.

We use all the 19 OpenCL benchmarks in SPECACCEL-v1.2 [28],

with each benchmark including one or multiple kernels. For each

benchmark, we use its test, train and ref inputs, and present the

execution times of the whole program and OpenCL kernels.

6.1 Overall Results over Capacity-only Tiling
Figure 15(a) shows the performance improvement of applying

bandwidth-aware loop tiling, for the whole program (using the

ref input) and in order of ascending speedups. Here, the baseline is

capacity-only tiling with straightforward data fetching operations,

i.e., continuous (strided) DMA for continuous (strided) accesses and

𝑔𝑙𝑑/𝑔𝑠𝑡 for irregular accesses. For the left nine benchmarks, SWCL

failed to find data fetching optimization opportunities. For lud, ge,
srad and cfd, SWCL optimized continuous memory accesses, achiev-

ing speedups of 1.08x, 1.09x, 1.23x and 1.09x, respectively. For lbm,

SWCL optimized strided memory accesses, obtaining a speedup
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Figure 15: Speedups of bandwidth-aware loop tiling over
capacity-only loop tiling.
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Figure 16: Total data fetching time of bandwidth-aware
tiling, normalized to capacity-only tiling.
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Figure 17: Runtime overhead for optimizing irregular mem-
ory accesses, normalized to kernel execution time.

of 2.7x. And for spmv, bfs, bplustree, cfd and lavamd, SWCL opti-

mized irregular memory accesses, yielding significant performance

improvements, ranging from 1.04x to 5x. Figure 15(b) shows the

results for the kernels with test/train/ref inputs, which demonstrate

that SWCL is effective across these different inputs.
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(b) performStreamCollide_kernel

Figure 18: Speedups (the specified kernel) and effective band-
width (for lud and lbm, using the ref input), where "𝑛s+𝑚c"
denotes generating 𝑛 strided-DMA and𝑚 continuous-DMA.

Furthermore, Figure 16 shows data fetching time of bandwidth-

aware tiling, normalized to capacity-only tiling, for cases on which

bandwidth-aware loop tiling finds optimization opportunities. Data

fetching time is significantly reduced compared with capacity-only

tiling, even if total data volume transferred may increase.

Figure 17 shows the overall runtime overhead for the cases op-

timized for irregular memory accesses, normalized to kernel exe-

cution time. Runtime overhead, which can be divided into three

parts of collecting accessed addresses, grouping 𝑔𝑙𝑑 instructions

into DMA, and selecting a subtiling size, takes less than 0.1% of the

kernel execution time one average, is thus negligible.

6.2 Case Studies
We use four benchmarks to study the four typical cases that can be

optimized by our bandwidth-aware loop tiling.

lud - continuous access. It includes a continuous access to a small

volume of data in lud_internal, fetching a block of 64 × 64 elements

from a matrix (buffer 𝑚) in each work-group. Therefore, SWCL

merges the 64 continuous DMA operations into one strided DMA

operation, and increases the bandwidth from 12.1GB/s to 18.4GB/s,

yielding an 8% performance improvement for the kernel. We have

measured the effective bandwidth for the kernel and plotted the

results in Figure 18(a), for merging the 8, 16, 24, 32, 40, 48, 56 and

64 operations, respectively. The performance increases as more

operations are merged together.

lbm - strided access. It includes accesses with a small 𝑏𝑠𝑖𝑧𝑒 in per-
formStreamCollide_kernel, which loads 20 discrete elements from

buffer srcGrid (denote as 𝑠𝑟𝑐𝐺𝑟𝑖𝑑 [𝑖], 𝑖 = 0, 1, ..19) in each work-

item. Therefore, capacity-only loop tiling selects the tile size of 4

(i.e., 400 work-items) for the work-group loop, issuing 20 strided-

DMA operations with 𝑏𝑠𝑖𝑧𝑒=4B, 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒=76B and 𝐷𝑀𝐴𝑠𝑖𝑧𝑒 =

1600B and effective bandwidth 0.6GB/s. However, SWCL selects

the tile size of 50 for the work-item loop, and transforms the 20

strided DMA into 9 continuous DMA with the effective bandwidth

of 2.3GB/s, obtaining the speedup (performStreamCollide_kernel) of
2.8x, with the ref input. We have measured the effective bandwidth

of this kernel and plotted the results in Figure 18(b), for merging

4, 7, 10, 13, 16, 17, 18, 19 and 20 operations respectively. Again,

the performance increases as more operations are merged together.

Furthermore, the left part in Table 3 shows the ratios of useful data

volume to useless data volume for buffer 𝑠𝑟𝑐𝐺𝑟𝑖𝑑 when merging

various numbers of strided DMA operations, with the ref input.
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Figure 19: Analysis on cfd (using the ref input), with (a)
Speedups (kernel compute_flux) and effective bandwidth,
where "𝑛gld+𝑚c" denotes generating 𝑛 𝑔𝑙𝑑 instructions and
𝑚 continuous-DMA. (b) Its irregular accesses.

Table 3: Ratios of useless data volume to useful data volume,
for buffer 𝑠𝑟𝑐𝐺𝑟𝑖𝑑 from lbm and buffer 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 from cfd.

buffer 𝑠𝑟𝑐𝐺𝑟𝑖𝑑 𝑟𝑎𝑡𝑖𝑜 buffer 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑡𝑖𝑜

20𝑠 0

4𝑔𝑙𝑑 0

16𝑠+1𝑐 0.81

13𝑠+2𝑐 1.67

3𝑔𝑙𝑑+1𝑐 0.43

10𝑠+3𝑐 2.53

7𝑠+4𝑐 3.39

2𝑔𝑙𝑑+2𝑐 0.24

4𝑠+5𝑐 4.25

3𝑠+6𝑐 5.21

1𝑔𝑙𝑑+3𝑐 0.16

2𝑠+7𝑐 6.15

1𝑠+8𝑐 7.10

4𝑐 0.33

9𝑐 8.05

Results show that performance can be improved even if large SPM

spaces are wasted, due to the increase of effective bandwidth.

cfd - irregular access. It includes an irregular access in

compute_flux, which reads the 4 neighbours for each element in

buffer variables. The capacity-only loop tiling would tile the work-
group loop with the tile size of 3 (i.e., 576 work-items), and uses

𝑔𝑙𝑑 to load data. In comparison, SWCL selects the tile size of 2 (i.e.,

384 work-items), and transforms 67% of 𝑔𝑙𝑑 instructions into con-

tinuous DMA operations, increasing the effective bandwidth from

0.35GB/s to 0.92GB/s, obtaining a speedup (compute_flux) of 2.3x, as
shown in Figure 19(a). Sub-tiling is not triggered in this benchmark

(for the ref input) because the 4 neighbors are closely located, as

shown in Figure 19(b). Furthermore, the right part in Table 3 shows

the ratios of useful data volume to useless data volume for buffer

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 when transforming accesses to 1, 2, 3 and 4 neighbours

from 𝑔𝑙𝑑 to DMA respectively, with the ref input, which indicate a

relatively low amount of useless data.

lavamd - irregular access benefit from cross-host-kernel IPA. It
includes a number of irregular accesses in kernel_gpu_opencl, all
dependent on elements of buffer d_box_gpu, i.e., access to buffer

d_rv_gpu and d_qv_gpu are determined by the field nei of elements

from d_box_gpu, and accesses to buffer d_rv_gpu is also determined

by the field offset of elements from d_box_gpu. The capacity-only
loop tiling would tile the work-group loop with the tile size of 400 to

just let buffer d_box_gpu stored in SPM. In bandwidth-aware loop
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Figure 20: Speedups (kernels) of bandwidth-aware tiling
over bandwidth-only tiling [6].

tiling, the tile size is reduced to one work-group to allow all the four

buffers stored in SPM. Furthermore, buffer d_box_gpu is not modi-

fied in this kernel, and the two fields (i.e., nei and offset) are com-

puted in host element-wise with scalars. SWCL analyses host codes

and finds out that field offset grows linearly with work_group_id,
and values of field nei denote 26 neighbouring elements with a

maximum stride of 4 in x/y/z dimensions. Based on this analysis,

SWCL succeeds to fetch data from buffers d_rv_gpu and d_qv_gpu,
without depending on values of buffer d_box_gpu at run-time, and

gains a speedup (whole program) of 1.09x compared with tiling

without IPA, achieving a total speedup (whole program) of 5.2x

over capacity-only loop tiling.

6.3 Comparison with Bandwidth-only Tiling
The work that is the most closely related to ours is [6], which

uses a bounded method for irregular accesses, by dividing address

ranges of irregular accesses into a number of sub-ranges with a

fixed size 𝑆 . We have implemented its algorithm on top of our tiling

method, denoted as bw-only-𝑆 , where S = 128B, 512B and 1024B.

Figure 20 shows the speedups (kernels) of SWCL over bw-only, for

six benchmarks that contain irregular accesses, with the ref input

and SWCL outperforms bw-only by 38%, 38%, and 43% for S = 128B,

512B and 1024B. In particular, significant speedups can be obtained

for spmv, bfs and cfd, because they access small data fragments (e.g.,

4B) irregularly, and bw-only would cause significant SPM waste.

7 RELATEDWORK
Loop tiling policies. There has been a lot of work on applying

loop tiling to improve parallelism and locality. To improve par-

allelism, researchers focus on concurrent execution of tiles [31,

65, 73], increasing parallelisms [11, 22, 25, 46], improving load bal-

ance [53] [59], and avoiding thread divergence [21]. In particular,

to explore the parallelism of irregular applications, sparse tiling

methods [29, 45, 56–58] are researched. To improve locality, re-

searchers focus on increasing data reuse for various memory hi-

erarchy [30] [66] [68], such as cache hierarchy on multicore ar-

chitectures [12, 39, 43, 69, 74], registers and shared-memory on

GPUs [13, 14, 26, 50, 51], by reducing the volume of data transfer

between different levels in memory hierarchy. SWCL also performs

loop tiling for increasing data reuse, but differs from them by bal-

ancing bandwidth and capacity. There are also some works on using

model-driven empirical search methods [15, 63, 70] for tile size se-

lection, as well as some machine learning techniques [42, 49, 71].

Also, works on parameterized loop tiling [5] [24] [25] [52] are used

to facilitate iterative compilation and auto-tuning.

Loop tiling for SPM. [33] [34] perform SPM allocation and loop

tiling considering aliases. DMATiler [35] focuses on regular ac-

cesses only, leaving irregular accesses to software cache. [32] uses

a gather method to handle irregular accesses, which does not al-

low fetching useless data. Some works [7] [40] [6] use a bounded

method for irregular accesses, fetching continuous data according

to the address ranges of irregular accesses. Specifically, when SPM

capacity is exceeded, [7] uses load instructions instead of DMA,

whereas it’s not discussed in [40] [6]. Comparing with them, we

create a precise bandwidth-aware model for both regular and ir-

regular memory accesses, and enable to fetch some useless data

for increasing bandwidth utilization, by making a tradeoff between

bandwidth utilization and SPM wasting.

Thread-fusion optimizations. There are a number of efforts on op-

timizing multiple threads simultaneously (i.e., multiple work-items

in the same work-group [55] [32] [27]) to exploit different levels of

parallelism, by performing various loop transformations and vec-

torization. These works typically optimize the threads executing on

the same compute unit, whereas SWCL can further fuse the threads

executing on different devices, e.g., host CPUs and accelerating

cores.

Optimizations on Sunway architecture. There’re a few works ex-

ploiting architectural features on Sunway, e.g., heterogeneous com-

puting cores, SIMD, register-level communication, SPM, and so

on, which are either hand-tuned application-specific implemen-

tations [3, 8, 19, 61], or domain-specific frameworks [18, 36, 75].

Specially, [38, 62, 76] perform hand-tuned tiling for parallelism.

8 CONCLUSION
In this paper, we have proposed an approach of bandwidth-aware

loop tiling for OpenCL programs, which enhances the traditional

loop tiling by coordinately considering the bandwidth utilization

and on-chip memory capacity. First, a decision tree is created to

select optimal data fetching operations for different data access

patterns, according to the predicted bandwidth utilization. After

that, a dynamic loop tiling framework which leverages the selected

data fetching operations is used to determine the optimal tile size,

and generate the parameterized tiled code at runtime. Furthermore,

a parameter-guided IPA is exploited to enhance the loop tiling, by

seeking for opportunities of static tiling for irregular accesses and

using re-computation for saving SPM capacity. We implement the

approach in the Sunway TaihuLight’s OpenCL compiler, i.e., SWCL,

and test it using SPECACCEL. Results show that bandwidth-aware

loop tiling is more effective than capacity-only and bandwidth-only

loop tiling, on architectures with DMA-supported SPM.
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